Source code for openpnm.visualization._plottools

import logging

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.pyplot import cm
from tqdm.auto import tqdm

import openpnm as op

logger = logging.getLogger(__name__)


__all__ = [
    'plot_connections',
    'plot_coordinates',
    'plot_networkx',
    'plot_tutorial',
    'plot_notebook',
    'plot_vispy',
    'generate_voxel_image',
    'set_mpl_style',
]


[docs] def plot_connections(network, throats=None, ax=None, size_by=None, color_by=None, label_by=None, cmap='jet', color='b', alpha=1.0, linestyle='solid', linewidth=1, **kwargs): # pragma: no cover r""" Produce a 3D plot of the network topology. This shows how throats connect for quick visualization without having to export data to veiw in Paraview. Parameters ---------- network : Network The network whose topological connections to plot throats : array_like (optional) The list of throats to plot if only a sub-sample is desired. This is useful for inspecting a small region of the network. If no throats are specified then all throats are shown. fig : Matplotlib figure handle and line property arguments (optional) If a ``fig`` is supplied, then the topology will be overlaid on this plot. This makes it possible to combine coordinates and connections, and to color throats differently for instance. size_by : array_like (optional) An ndarray of throat values (e.g. alg['throat.rate']). These values are used to scale the ``linewidth``, so if the lines are too thin, then increase ``linewidth``. color_by : array_like (optional) An ndarray of throat values (e.g. alg['throat.rate']). label_by : array_like (optional) An array or list of values to use as labels cmap : str or cmap object (optional) The matplotlib colormap to use if specfying a throat property for ``color_by`` color : str, optional (optional) A matplotlib named color (e.g. 'r' for red). alpha : float (optional) The transparency of the lines, with 1 being solid and 0 being invisible linestyle : str (optional) Can be one of {'solid', 'dashed', 'dashdot', 'dotted'}. Default is 'solid'. linewidth : float (optional) Controls the thickness of drawn lines. Is used to scale the thickness if ``size_by`` is given. Default is 1. If a value is provided for ``size_by`` then they are used to scale the ``linewidth``. font : dict A dictionary of key-value pairs that are used to control the font appearance if `label_by` is provided. **kwargs : dict All other keyword arguments are passed on to the ``Line3DCollection`` class of matplotlib, so check their documentation for additional formatting options. Returns ------- lc : LineCollection or Line3DCollection Matplotlib object containing the lines representing the throats. Notes ----- To create a single plot containing both pore coordinates and throats, consider creating an empty figure and then pass the ``ax`` object as an argument to ``plot_connections`` and ``plot_coordinates``. Otherwise, each call to either of these methods creates a new figure. See Also -------- plot_coordinates Examples -------- >>> import openpnm as op >>> import matplotlib as mpl >>> import matplotlib.pyplot as plt >>> mpl.use('Agg') >>> pn = op.network.Cubic(shape=[10, 10, 3]) >>> pn.add_boundary_pores() >>> Ts = pn.throats('*boundary', mode='not') # find internal throats >>> fig, ax = plt.subplots() # create empty figure >>> _ = op.visualization.plot_connections(network=pn, ... throats=Ts) # plot internal throats >>> Ts = pn.throats('*boundary') # find boundary throats >>> _ = op.visualization.plot_connections(network=pn, ... throats=Ts, ... ax=ax, ... color='r') # plot boundary throats in red """ import matplotlib.pyplot as plt from matplotlib import cm from matplotlib import colors as mcolors from matplotlib.collections import LineCollection from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Line3DCollection from openpnm.topotools import dimensionality Ts = network.Ts if throats is None else network._parse_indices(throats) dim = dimensionality(network) ThreeD = True if dim.sum() == 3 else False # Add a dummy axis for 1D networks if dim.sum() == 1: dim[np.argwhere(~dim)[0]] = True if "fig" in kwargs.keys(): raise Exception("'fig' argument is deprecated, use 'ax' instead.") if ax is None: fig, ax = plt.subplots() else: # The next line is necessary if ax was created using plt.subplots() fig, ax = ax.get_figure(), ax.get_figure().gca() if ThreeD and ax.name != '3d': fig.delaxes(ax) ax = fig.add_subplot(111, projection='3d') # Collect coordinates Ps = np.unique(network['throat.conns'][Ts]) X, Y, Z = network['pore.coords'][Ps].T xyz = network["pore.coords"][:, dim] P1, P2 = network["throat.conns"][Ts].T throat_pos = np.column_stack((xyz[P1], xyz[P2])).reshape((Ts.size, 2, dim.sum())) # Deal with optional style related arguments if 'c' in kwargs.keys(): color = kwargs.pop('c') color = mcolors.to_rgb(color) + tuple([alpha]) if isinstance(cmap, str): try: cmap = plt.colormaps.get_cmap(cmap) except AttributeError: cmap = plt.cm.get_cmap(cmap) # Override colors with color_by if given if color_by is not None: color_by = np.array(color_by, dtype=np.float16) if len(color_by) != len(Ts): color_by = color_by[Ts] if not np.all(np.isfinite(color_by)): color_by[~np.isfinite(color_by)] = 0 logger.warning('nans or infs found in color_by array, setting to 0') vmin = kwargs.pop('vmin', color_by.min()) vmax = kwargs.pop('vmax', color_by.max()) cscale = (color_by - vmin) / (vmax - vmin) color = cmap(cscale) color[:, 3] = alpha if size_by is not None: if len(size_by) != len(Ts): size_by = size_by[Ts] if not np.all(np.isfinite(size_by)): size_by[~np.isfinite(size_by)] = 0 logger.warning('nans or infs found in size_by array, setting to 0') linewidth = size_by / size_by.max() * linewidth if label_by is not None: if len(label_by) != len(Ts): label_by = label_by[Ts] fontkws = kwargs.pop('font', {}) if ThreeD: lc = Line3DCollection(throat_pos, colors=color, cmap=cmap, linestyles=linestyle, linewidths=linewidth, antialiaseds=np.ones_like(network.Ts), **kwargs) else: lc = LineCollection(throat_pos, colors=color, cmap=cmap, linestyles=linestyle, linewidths=linewidth, antialiaseds=np.ones_like(network.Ts), **kwargs) if label_by is not None: for count, (P1, P2) in enumerate(network.conns[Ts, :]): i, j, k = np.mean(network.coords[[P1, P2], :], axis=0) ax.text(i, j, label_by[count], ha='center', va='center', **fontkws) ax.add_collection(lc) if np.size(Ts) > 0: _scale_axes(ax=ax, X=X, Y=Y, Z=Z) _label_axes(ax=ax, X=X, Y=Y, Z=Z) fig.tight_layout() return lc
[docs] def plot_coordinates(network, pores=None, ax=None, size_by=None, color_by=None, label_by=None, cmap='jet', color='r', alpha=1.0, marker='o', markersize=10, **kwargs): # pragma: no cover r""" Produce a 3D plot showing specified pore coordinates as markers. Parameters ---------- network : Network The network whose topological connections to plot. pores : array_like (optional) The list of pores to plot if only a sub-sample is desired. This is useful for inspecting a small region of the network. If no pores are specified then all are shown. ax : Matplotlib axis handle If ``ax`` is supplied, then the coordinates will be overlaid. This enables the plotting of multiple different sets of pores as well as throat connections from ``plot_connections``. size_by : str or array_like An ndarray of pore values (e.g. alg['pore.concentration']). These values are normalized by scaled by ``markersize``. Note that this controls the marker *area*, so if you want the markers to be proportional to diameter you should do `size_by=net['pore.diameter']**2`. color_by : str or array_like An ndarray of pore values (e.g. alg['pore.concentration']). label_by : array_like (optional) An array or list of values to use as labels cmap : str or cmap object The matplotlib colormap to use if specfying a pore property for ``color_by`` color : str A matplotlib named color (e.g. 'r' for red). alpha : float The transparency of the lines, with 1 being solid and 0 being invisible marker : 's' The marker to use. The default is a circle. Options are explained `here <https://matplotlib.org/3.2.1/api/markers_api.html>`_ markersize : scalar Controls size of marker, default is 1.0. This value is used to scale the ``size_by`` argument if given. font : dict A dictionary of key-value pairs that are used to control the font appearance if `label_by` is provided. **kwargs All other keyword arguments are passed on to the ``scatter`` function of matplotlib, so check their documentation for additional formatting options. Returns ------- pc : PathCollection Matplotlib object containing the markers representing the pores. Notes ----- To create a single plot containing both pore coordinates and throats, consider creating an empty figure and then pass the ``ax`` object as an argument to ``plot_connections`` and ``plot_coordinates``. Otherwise, each call to either of these methods creates a new figure. See Also -------- plot_connections Examples -------- >>> import openpnm as op >>> import matplotlib as mpl >>> import matplotlib.pyplot as plt >>> mpl.use('Agg') >>> pn = op.network.Cubic(shape=[10, 10, 3]) >>> pn['pore.internal'] = True >>> pn.add_boundary_pores() >>> Ps = pn.pores('internal') # find internal pores >>> fig, ax = plt.subplots() # create empty figure >>> _ = op.visualization.plot_coordinates(network=pn, ... pores=Ps, ... color='b', ... ax=ax) # plot internal pores >>> Ps = pn.pores('*boundary') # find boundary pores >>> _ = op.visualization.plot_coordinates(network=pn, ... pores=Ps, ... color='r', ... ax=ax) # plot boundary pores in red """ import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D from openpnm.topotools import dimensionality Ps = network.Ps if pores is None else network._parse_indices(pores) dim = dimensionality(network) ThreeD = True if dim.sum() == 3 else False # Add a dummy axis for 1D networks if dim.sum() == 1: dim[np.argwhere(~dim)[0]] = True # Add 2 dummy axes for 0D networks (1 pore only) if dim.sum() == 0: dim[[0, 1]] = True if "fig" in kwargs.keys(): raise Exception("'fig' argument is deprecated, use 'ax' instead.") if ax is None: fig, ax = plt.subplots() else: # The next line is necessary if ax was created using plt.subplots() fig, ax = ax.get_figure(), ax.get_figure().gca() if ThreeD and ax.name != '3d': fig.delaxes(ax) ax = fig.add_subplot(111, projection='3d') # Collect specified coordinates X, Y, Z = network['pore.coords'][Ps].T # The bounding box for fig is the entire ntwork (to fix the problem with # overwriting figures' axes lim) Xl, Yl, Zl = network['pore.coords'].T # Parse formatting kwargs if 'c' in kwargs.keys(): color = kwargs.pop('c') if 's' in kwargs.keys(): markersize = kwargs.pop('s') if isinstance(cmap, str): try: cmap = plt.colormaps.get_cmap(cmap) except AttributeError: cmap = plt.cm.get_cmap(cmap) if color_by is not None: color_by = np.array(color_by, dtype=np.float16) if len(color_by) != len(Ps): color_by = color_by[Ps] if not np.all(np.isfinite(color_by)): color_by[~np.isfinite(color_by)] = 0 logger.warning('nans or infs found in color_by array, setting to 0') vmin = kwargs.pop('vmin', color_by.min()) vmax = kwargs.pop('vmax', color_by.max()) cscale = (color_by - vmin) / (vmax - vmin) color = cmap(cscale) if size_by is not None: if len(size_by) != len(Ps): size_by = size_by[Ps] if not np.all(np.isfinite(size_by)): size_by[~np.isfinite(size_by)] = 0 logger.warning('nans or infs found in size_by array, setting to 0') markersize = size_by / size_by.max() * markersize if label_by is not None: if len(label_by) != len(Ps): label_by = label_by[Ps] fontkws = kwargs.pop('font', {}) if ThreeD: sc = ax.scatter(X, Y, Z, c=color, s=markersize, marker=marker, alpha=alpha, **kwargs) _scale_axes(ax=ax, X=Xl, Y=Yl, Z=Zl) else: _X, _Y = np.column_stack((X, Y, Z))[:, dim].T sc = ax.scatter(_X, _Y, c=color, s=markersize, marker=marker, alpha=alpha, **kwargs) if label_by is not None: for count, (i, j, k) in enumerate(network.coords[Ps, :]): ax.text(i, j, label_by[count], ha='center', va='center', **fontkws) _scale_axes(ax=ax, X=Xl, Y=Yl, Z=np.zeros_like(Yl)) _label_axes(ax=ax, X=Xl, Y=Yl, Z=Zl) fig.tight_layout() return sc
def _label_axes(ax, X, Y, Z): labels = ["X", "Y", "Z"] dim = np.zeros(3, dtype=bool) for i, arr in enumerate([X, Y, Z]): if np.unique(arr).size > 1: dim[i] = True # Add a dummy axis for 1D networks if dim.sum() == 1: dim[np.argwhere(~dim)[0]] = True # Add 2 dummy axes for 0D networks (1 pore only) if dim.sum() == 0: dim[[0, 1]] = True dim_idx = np.argwhere(dim).squeeze() ax.set_xlabel(labels[dim_idx[0]]) ax.set_ylabel(labels[dim_idx[1]]) if hasattr(ax, "set_zlim"): ax.set_zlabel("Z") def _scale_axes(ax, X, Y, Z): max_range = np.ptp([X, Y, Z]).max() / 2 mid_x = (X.max() + X.min()) * 0.5 mid_y = (Y.max() + Y.min()) * 0.5 mid_z = (Z.max() + Z.min()) * 0.5 ax.set_xlim(mid_x - max_range, mid_x + max_range) ax.set_ylim(mid_y - max_range, mid_y + max_range) if hasattr(ax, "set_zlim"): ax.set_zlim(mid_z - max_range, mid_z + max_range) else: ax.axis("equal")
[docs] def plot_networkx(network, plot_throats=True, labels=None, colors=None, scale=1, ax=None, alpha=1.0): # pragma: no cover r""" Creates a pretty 2D plot for 2D OpenPNM networks. Parameters ---------- network : Network plot_throats : bool, optional Plots throats as well as pores, if True. labels : list, optional List of OpenPNM labels colors : list, optional List of corresponding colors to the given `labels`. scale : float, optional Scale factor for size of pores. ax : matplotlib.Axes, optional Matplotlib axes object alpha: float, optional Transparency value, 1 is opaque and 0 is transparent """ import matplotlib.pyplot as plt from matplotlib.collections import PathCollection from networkx import Graph, draw_networkx_edges, draw_networkx_nodes from openpnm.topotools import dimensionality dims = dimensionality(network) if dims.sum() > 2: raise Exception("NetworkX plotting only works for 2D networks.") temp = network['pore.coords'].T[dims].squeeze() if dims.sum() == 1: x = temp y = np.zeros_like(x) if dims.sum() == 2: x, y = temp try: node_size = scale * network['pore.diameter'] except KeyError: node_size = np.ones_like(x) * scale * 0.5 G = Graph() pos = {network.Ps[i]: [x[i], y[i]] for i in range(network.Np)} if not np.isfinite(node_size).all(): node_size[~np.isfinite(node_size)] = np.nanmin(node_size) node_color = np.array(['k'] * len(network.Ps)) if labels: if not isinstance(labels, list): labels = [labels] if not isinstance(colors, list): colors = [colors] if len(labels) != len(colors): raise Exception('len(colors) must be equal to len(labels)!') for label, color in zip(labels, colors): node_color[network.pores(label)] = color if ax is None: fig, ax = plt.subplots() ax.set_aspect('equal', adjustable='datalim') offset = node_size.max() * 0.5 ax.set_xlim((x.min() - offset, x.max() + offset)) ax.set_ylim((y.min() - offset, y.max() + offset)) ax.axis("off") # Keep track of already plotted nodes temp = [id(item) for item in ax.collections if isinstance(item, PathCollection)] # Plot pores gplot = draw_networkx_nodes(G, ax=ax, pos=pos, nodelist=network.Ps.tolist(), alpha=alpha, node_color=node_color, edgecolors=node_color, node_size=node_size) # (Optionally) Plot throats if plot_throats: draw_networkx_edges(G, pos=pos, edge_color='k', alpha=alpha, edgelist=network['throat.conns'].tolist(), ax=ax) spi = 2700 # 1250 was obtained by trial and error figwidth, figheight = ax.get_figure().get_size_inches() figsize_ratio = figheight / figwidth data_ratio = ax.get_data_ratio() corr = min(figsize_ratio / data_ratio, 1) xrange = np.ptp(ax.get_xlim()) markersize = np.atleast_1d((corr*figwidth)**2 / xrange**2 * node_size**2 * spi) for item in ax.collections: if isinstance(item, PathCollection) and id(item) not in temp: item.set_sizes(markersize) return gplot
[docs] def plot_tutorial(network, pore_labels=None, throat_labels=None, font_size=12, line_width=2, node_color='b', edge_color='r', node_size=500): # pragma: no cover r""" Generate a network plot suitable for tutorials and explanations. Parameters ---------- network : Network The network to plot, should be 2D, since the z-coordinate will be ignored. pore_labels : array_like A list of values to use for labeling the pores. If not provided then pore index is used. throat_labels : array_like A list of values to use for labeling the throat. If not provided then throat index is used. font_size : int Size of font to use for labels. line_width : int Thickness of edge lines and node borders. node_color : str Color of node border. edge_color : str Color of edge lines. node_size : int Size of node circle. Returns ------- g : NetworkX plot object """ import matplotlib.pyplot as plt import networkx as nx from openpnm.io import network_to_networkx G = network_to_networkx(network=network) pos = {i: network['pore.coords'][i, 0:2] for i in network.Ps} if pore_labels is None: labels = {i: i for i in network.Ps} else: labels = {i: pore_labels[i] for i in network.Ps} if throat_labels is None: edge_labels = {tuple(network['throat.conns'][i, :]): i for i in network.Ts} else: edge_labels = {tuple(network['throat.conns'][i, :]): throat_labels[i] for i in network.Ts} gplot = nx.draw_networkx_nodes(G, pos, node_size=node_size, node_color='w', edgecolors=node_color, linewidths=line_width) nx.draw_networkx_edges( G, pos, width=line_width, edge_color=edge_color) nx.draw_networkx_labels( G, pos, labels=labels, font_size=font_size, font_color='k') nx.draw_networkx_edge_labels( G, pos, edge_labels=edge_labels, font_size=font_size, font_color='k') # Prettify the figure (margins, etc.) plt.axis('off') ax = plt.gca() ax.margins(0.1, 0.1) ax.set_aspect("equal") fig = plt.gcf() fig.tight_layout() dims = op.topotools.dimensionality(network) xy_range = np.ptp(network.coords, axis=0)[dims] aspect_ratio = xy_range[0] / xy_range[1] fig.set_size_inches(5, 5 / aspect_ratio) return gplot
[docs] def plot_notebook(network, node_color=0, edge_color=0, node_size=1, node_scale=20, edge_scale=5, colormap='viridis'): r""" Visualize a network in 3D using Plotly. The pores and throats are scaled and colored by their properties. The final figure can be rotated and zoomed. Parameters ---------- network : Network The network to visualize node_color : ndarray An array of values used for coloring the pores. If not given, the lowest value of the employed colormap is assigned to all markers. edge_color : ndarray An array of values used for coloring the throats. If not given, the lowest value of the employed colormap is assigned to all lines. node_size : ndarray An array of values controlling the size of the markers. If not given all markers will be the same size node_scale : scalar A scaler to resize the markers edge_scale : scalar A scaler to the line thickness colormap : str The colormap to use Returns ------- fig : Plotly graph object The graph object containing the generated plots. The object has several useful methods. Notes ----- **Important** a) This does not work in Spyder. It should only be called from a Jupyter Notebook. b) This is only meant for relatively small networks. For proper visualization use Paraview. """ try: import plotly.graph_objects as go except ImportError: raise Exception('Plotly is not installed.' 'Please install Plotly using "pip install plotly"') # Get xyz coords for points x_nodes, y_nodes, z_nodes = network.coords.T node_size = np.ones(network.Np)*node_size node_color = np.ones(network.Np)*node_color edge_color = np.ones(network.Nt)*edge_color node_labels = [str(i) + ': ' + str(x) for i, x in enumerate(zip(node_size, node_color))] edge_labels = [str(i) + ': ' + str(x) for i, x in enumerate(edge_color)] # Create edges and nodes coordinates N = network.Nt*3 x_edges = np.zeros(N) x_edges[np.arange(0, N, 3)] = network.coords[network.conns[:, 0]][:, 0] x_edges[np.arange(1, N, 3)] = network.coords[network.conns[:, 1]][:, 0] x_edges[np.arange(2, N, 3)] = np.nan y_edges = np.zeros(network.Nt*3) y_edges[np.arange(0, N, 3)] = network.coords[network.conns[:, 0]][:, 1] y_edges[np.arange(1, N, 3)] = network.coords[network.conns[:, 1]][:, 1] y_edges[np.arange(2, N, 3)] = np.nan z_edges = np.zeros(network.Nt*3) z_edges[np.arange(0, N, 3)] = network.coords[network.conns[:, 0]][:, 2] z_edges[np.arange(1, N, 3)] = network.coords[network.conns[:, 1]][:, 2] z_edges[np.arange(2, N, 3)] = np.nan # Create plotly's Scatter3d object for pores and throats trace_edges = go.Scatter3d(x=x_edges, y=y_edges, z=z_edges, mode='lines', line=dict(color=edge_color, width=edge_scale, colorscale=colormap), text=edge_labels, hoverinfo='text') trace_nodes = go.Scatter3d(x=x_nodes, y=y_nodes, z=z_nodes, mode='markers', marker=dict(symbol='circle', size=node_size*node_scale, color=node_color, colorscale=colormap, line=dict(color='black', width=0.5)), text=node_labels, hoverinfo='text') axis = dict(showbackground=False, showline=False, zeroline=False, showgrid=False, showticklabels=False, title='') layout = go.Layout(width=650, height=625, showlegend=False, scene=dict(xaxis=dict(axis), yaxis=dict(axis), zaxis=dict(axis),), margin=dict(t=100), hovermode='closest') data = [trace_edges, trace_nodes] fig = go.Figure(data=data, layout=layout) return fig
def _generate_voxel_image(network, pore_shape, throat_shape, max_dim=200): r""" Generates a 3d numpy array from an OpenPNM network Parameters ---------- network : OpenPNM Network Network from which voxel image is to be generated pore_shape : str Shape of pores in the network, valid choices are "sphere", "cube" throat_shape : str Shape of throats in the network, valid choices are "cylinder", "cuboid" max_dim : int Number of voxels in the largest dimension of the network Returns ------- im : ndarray Voxelated image corresponding to the given pore network model Notes ----- (1) The generated voxel image is labeled with 0s, 1s and 2s signifying solid phase, pores, and throats respectively. """ from porespy.tools import insert_cylinder, overlay from skimage.morphology import ball, cube xyz = network["pore.coords"] cn = network["throat.conns"] # Distance bounding box from the network by a fixed amount delta = network["pore.diameter"].mean() / 2 if isinstance(network, op.network.Cubic): try: delta = op.topotools.get_spacing(network).mean() / 2 except AttributeError: delta = network.spacing.mean() / 2 # Shift everything to avoid out-of-bounds extra_clearance = int(max_dim * 0.05) # Transform points to satisfy origin at (0, 0, 0) xyz0 = xyz.min(axis=0) - delta xyz += -xyz0 res = (np.ptp(xyz, axis=0).max() + 2 * delta) / max_dim shape = np.rint((xyz.max(axis=0) + delta) / res).astype(int) + 2 * extra_clearance # Transforming from real coords to matrix coords xyz = np.rint(xyz / res).astype(int) + extra_clearance pore_radi = np.rint(network["pore.diameter"] * 0.5 / res).astype(int) throat_radi = np.rint(network["throat.diameter"] * 0.5 / res).astype(int) im_pores = np.zeros(shape, dtype=np.uint8) im_throats = np.zeros_like(im_pores) if pore_shape == "cube": pore_elem = cube rp = pore_radi * 2 + 1 # +1 since num_voxel must be odd rp_max = int(2 * round(delta / res)) + 1 if pore_shape == "sphere": pore_elem = ball rp = pore_radi rp_max = int(round(delta / res)) if throat_shape == "cuboid": raise Exception("Not yet implemented, try 'cylinder'.") # Generating voxels for pores for i, pore in enumerate(tqdm(network.Ps)): elem = pore_elem(rp[i]) try: im_pores = overlay(im1=im_pores, im2=elem, c=xyz[i]) except ValueError: elem = pore_elem(rp_max) im_pores = overlay(im1=im_pores, im2=elem, c=xyz[i]) # Get rid of pore overlaps im_pores[im_pores > 0] = 1 # Generating voxels for throats for i, throat in enumerate(tqdm(network.Ts)): try: im_throats = insert_cylinder( im_throats, r=throat_radi[i], xyz0=xyz[cn[i, 0]], xyz1=xyz[cn[i, 1]]) except ValueError: im_throats = insert_cylinder( im_throats, r=rp_max, xyz0=xyz[cn[i, 0]], xyz1=xyz[cn[i, 1]]) # Get rid of throat overlaps im_throats[im_throats > 0] = 1 # Subtract pore-throat overlap from throats im_throats = (im_throats.astype(bool) * ~im_pores.astype(bool)).astype(np.uint8) im = im_pores * 1 + im_throats * 2 return im[extra_clearance:-extra_clearance, extra_clearance:-extra_clearance, extra_clearance:-extra_clearance]
[docs] def generate_voxel_image(network, pore_shape="sphere", throat_shape="cylinder", max_dim=None, rtol=0.1): r""" Generate a voxel image from a Network Parameters ---------- network : OpenPNM Network Network from which voxel image is to be generated pore_shape : str Shape of pores in the network, valid choices are "sphere", "cube" throat_shape : str Shape of throats in the network, valid choices are "cylinder", "cuboid" max_dim : int Number of voxels in the largest dimension of the network rtol : float Stopping criteria for finding the smallest voxel image such that further increasing the number of voxels in each dimension by 25% would improve the predicted porosity of the image by less that ``rtol`` Returns ------- im : ndarray Voxelated image corresponding to the given pore network model Notes ----- (1) The generated voxelated image is labeled with 0s, 1s and 2s signifying solid phase, pores, and throats respectively. (2) If max_dim is not provided, the method calculates it such that the further increasing it doesn't change porosity by much. """ # If max_dim is provided, generate voxel image using max_dim if max_dim is not None: return _generate_voxel_image( network, pore_shape, throat_shape, max_dim=max_dim) max_dim = 200 # If max_dim is not provided, find best max_dim that predicts porosity err = 100 eps_old = 200 while err > rtol: im = _generate_voxel_image( network, pore_shape, throat_shape, max_dim=max_dim) eps = im.astype(bool).sum() / np.prod(im.shape) err = abs(1 - eps / eps_old) eps_old = eps max_dim = int(max_dim * 1.25) return im
def create_pore_colors_from_array(a, cmap='viridis'): colormap = cm.get_cmap(cmap) return colormap(a/a.max()) def create_throat_colors_from_array(a, cmap='viridis'): colormap = cm.get_cmap(cmap) return np.repeat(colormap(a/a.max()), 2, axis=0)
[docs] def plot_vispy( network, pore_color=None, pore_size=None, throat_color=None, throat_size=None, bgcolor='grey', ): r""" Creates a pretty network plot using VisPy. Parameters ---------- network """ try: from vispy import scene except ModuleNotFoundError: raise Exception("vispy must be installed to use this function") canvas = scene.SceneCanvas(keys='interactive', show=True, bgcolor=bgcolor) view = canvas.central_widget.add_view() view.camera = 'turntable' view.camera.fov = 30 view.camera.distance = 3*np.max(network['pore.coords']) if pore_color is None: pore_color = create_pore_colors_from_array(network['pore.diameter'], cmap='viridis') else: pore_color = create_pore_colors_from_array(pore_color, cmap='viridis') if throat_color is None: throat_color = create_throat_colors_from_array(network['throat.diameter'], cmap='viridis') else: throat_color = create_throat_colors_from_array(throat_color, cmap='viridis') if pore_size is None: pore_size = network['pore.diameter'] if throat_size is None: throat_size = 2 else: throat_size = np.max(throat_size) # Arrays not supported here # plot spheres vis = scene.visuals.Markers( pos=network['pore.coords'], size=pore_size, antialias=0, face_color=pore_color, edge_width=0, scaling=True, spherical=True, ) vis.parent = view.scene # plot axis # vispy.scene.visuals.XYZAxis(parent=view.scene) # set camera center view.camera.center = np.array((network['pore.coords'][:, 0].max()/2, network['pore.coords'][:, 1].max()/2, network['pore.coords'][:, 2].max()/2)) # data preparation lines = np.zeros((len(network['throat.conns']), 2, 3)) for i in range(len(network['throat.conns'])): pair = network['throat.conns'][i] line = np.array([[network['pore.coords'][pair[0]], network['pore.coords'][pair[1]]]]) lines[i, :, :] = line # plot throats vis2 = scene.visuals.Line(lines, width=throat_size, color=throat_color, connect='segments', antialias=True,) vis2.parent = view.scene
[docs] def set_mpl_style(): # pragma: no cover r""" Prettifies matplotlib's output by adjusting fonts, markersize etc. """ sfont = 12 mfont = 12 lfont = 12 image_props = {'interpolation': 'none', 'cmap': 'viridis'} line_props = {'linewidth': 2, 'markersize': 7, 'markerfacecolor': 'w'} font_props = {'size': sfont} axes_props = {'titlesize': lfont, 'labelsize': mfont, 'linewidth': 2, 'labelpad': 8} xtick_props = {'labelsize': sfont, 'top': True, 'direction': 'in', 'major.size': 6, 'major.width': 2} ytick_props = {'labelsize': sfont, 'right': True, 'direction': 'in', 'major.size': 6, 'major.width': 2} legend_props = {'fontsize': mfont, 'frameon': False} figure_props = {'titlesize': sfont, 'autolayout': True} plt.rc('font', **font_props) plt.rc('lines', **line_props) plt.rc('axes', **axes_props) plt.rc('xtick', **xtick_props) plt.rc('ytick', **ytick_props) plt.rc('legend', **legend_props) plt.rc('figure', **figure_props) plt.rc('image', **image_props) try: import IPython IPython.display.set_matplotlib_formats('png2x') except ModuleNotFoundError: pass