Source code for openpnm.models.geometry.hydraulic_size_factors._funcs

import numpy as _np
import openpnm.models.geometry.conduit_lengths as _conduit_lengths
from openpnm.models.geometry import _geodocs


__all__ = [
    "spheres_and_cylinders",
    "circles_and_rectangles",
    "cones_and_cylinders",
    "intersecting_cones",
    "hybrid_cones_and_cylinders",
    "trapezoids_and_rectangles",
    "intersecting_trapezoids",
    "hybrid_trapezoids_and_rectangles",
    "pyramids_and_cuboids",
    "intersecting_pyramids",
    "hybrid_pyramids_and_cuboids",
    "cubes_and_cuboids",
    "squares_and_rectangles",
    "ncylinders_in_series"
]


[docs] @_geodocs def spheres_and_cylinders( network, pore_diameter="pore.diameter", throat_diameter="throat.diameter", ): r""" Computes hydraulic size factors for conduits assuming pores are spheres and throats are cylinders. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns ------- size_factors : ndarray Array (Nt by 3) containing conduit values for each element of the pore-throat-pore conduits. The array is formatted as ``[pore1, throat, pore2]``. Notes ----- The hydraulic size factor is the geometrical part of the pre-factor in Stoke's flow: .. math:: Q = \frac{A^2}{8 \pi \mu L} \Delta P = \frac{S_{hydraulic}}{\mu} \Delta P Thus :math:`S_{hydraulic}` represents the combined effect of the area and length of the *conduit*, which consists of a throat and 1/2 of the pores on each end. """ D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T L1, Lt, L2 = _conduit_lengths.spheres_and_cylinders( network=network, pore_diameter=pore_diameter, throat_diameter=throat_diameter ).T # Fi is the integral of (1/A^2) dx, x = [0, Li] a = 4 / (D1**3 * _np.pi**2) b = 2 * D1 * L1 / (D1**2 - 4 * L1**2) + _np.arctanh(2 * L1 / D1) F1 = a * b a = 4 / (D2**3 * _np.pi**2) b = 2 * D2 * L2 / (D2**2 - 4 * L2**2) + _np.arctanh(2 * L2 / D2) F2 = a * b Ft = Lt / (_np.pi / 4 * Dt**2)**2 # I is the integral of (y^2 + z^2) dA, divided by A^2 I1 = I2 = It = 1 / (2 * _np.pi) # S is 1 / (16 * pi^2 * I * F) S1 = 1 / (16 * _np.pi**2 * I1 * F1) St = 1 / (16 * _np.pi**2 * It * Ft) S2 = 1 / (16 * _np.pi**2 * I2 * F2) return _np.vstack([S1, St, S2]).T
[docs] @_geodocs def circles_and_rectangles( network, pore_diameter="pore.diameter", throat_diameter="throat.diameter", ): r""" Computes hydraulic size factors for conduits assuming pores are circles and throats are rectangles. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns ------- Notes ----- """ D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T L1, Lt, L2 = _conduit_lengths.circles_and_rectangles( network=network, pore_diameter=pore_diameter, throat_diameter=throat_diameter ).T # Fi is the integral of (1/A^3) dx, x = [0, Li] F1 = L1 / (D1**2 * _np.sqrt(D1**2 - 4 * L1**2)) F2 = L2 / (D2**2 * _np.sqrt(D2**2 - 4 * L2**2)) Ft = Lt / Dt**3 # S is 1 / (12 * F) S1, St, S2 = [1 / (Fi * 12) for Fi in [F1, Ft, F2]] return _np.vstack([S1, St, S2]).T
[docs] @_geodocs def cones_and_cylinders( network, pore_diameter="pore.diameter", throat_diameter="throat.diameter", ): r""" Computes hydraulic size factors for conduits assuming pores are truncated cones and throats are cylinders. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns ------- Notes ----- """ D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T L1, Lt, L2 = _conduit_lengths.cones_and_cylinders( network=network, pore_diameter=pore_diameter, throat_diameter=throat_diameter ).T # Fi is the integral of (1/A^2) dx, x = [0, Li] F1 = 16 / 3 * (L1 * (D1**2 + D1 * Dt + Dt**2) / (D1**3 * Dt**3 * _np.pi**2)) F2 = 16 / 3 * (L2 * (D2**2 + D2 * Dt + Dt**2) / (D2**3 * Dt**3 * _np.pi**2)) Ft = Lt / (_np.pi * Dt**2 / 4) ** 2 # I is the integral of (y^2 + z^2) dA, divided by A^2 I1 = I2 = It = 1 / (2 * _np.pi) # S is 1 / (16 * pi^2 * I * F) S1 = 1 / (16 * _np.pi**2 * I1 * F1) St = 1 / (16 * _np.pi**2 * It * Ft) S2 = 1 / (16 * _np.pi**2 * I2 * F2) return _np.vstack([S1, St, S2]).T
[docs] @_geodocs def intersecting_cones( network, pore_diameter="pore.diameter", throat_coords="throat.coords" ): r""" Computes hydraulic size factors of intersecting cones. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns ------- Notes ----- """ D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T L1, Lt, L2 = _conduit_lengths.intersecting_cones( network=network, throat_coords=throat_coords ).T # Fi is the integral of (1/A^2) dx, x = [0, Li] F1 = 16 / 3 * (L1 * (D1**2 + D1 * Dt + Dt**2) / (D1**3 * Dt**3 * _np.pi**2)) F2 = 16 / 3 * (L2 * (D2**2 + D2 * Dt + Dt**2) / (D2**3 * Dt**3 * _np.pi**2)) # I is the integral of (y^2 + z^2) dA, divided by A^2 I1 = I2 = 1 / (2 * _np.pi) # S is 1 / (16 * pi^2 * I * F) S1 = 1 / (16 * _np.pi**2 * I1 * F1) S2 = 1 / (16 * _np.pi**2 * I2 * F2) St = _np.full(len(Lt), _np.inf) return _np.vstack([S1, St, S2]).T
[docs] @_geodocs def hybrid_cones_and_cylinders( network, pore_diameter="pore.diameter", throat_coords="throat.coords" ): r""" Computes hydraulic size factors for conduits assuming pores are truncated cones and throats are cylinders. Parameters ---------- %(network)s %(Dp)s %(Tcoords)s Returns ------- Notes ----- """ D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T L1, Lt, L2 = _conduit_lengths.hybrid_cones_and_cylinders( network=network, pore_diameter=pore_diameter, throat_coords=throat_coords ).T # Fi is the integral of (1/A^2) dx, x = [0, Li] F1 = 16 / 3 * (L1 * (D1**2 + D1 * Dt + Dt**2) / (D1**3 * Dt**3 * _np.pi**2)) F2 = 16 / 3 * (L2 * (D2**2 + D2 * Dt + Dt**2) / (D2**3 * Dt**3 * _np.pi**2)) Ft = Lt / (_np.pi * Dt**2 / 4) ** 2 # I is the integral of (y^2 + z^2) dA, divided by A^2 I1 = I2 = It = 1 / (2 * _np.pi) mask = Lt == 0.0 if mask.any(): inv_F_t = _np.zeros(len(Ft)) inv_F_t[~mask] = 1/Ft[~mask] inv_F_t[mask] = _np.inf else: inv_F_t = 1/Ft # S is 1 / (16 * pi^2 * I * F) S1 = 1 / (16 * _np.pi**2 * I1 * F1) St = inv_F_t / (16 * _np.pi**2 * It) S2 = 1 / (16 * _np.pi**2 * I2 * F2) return _np.vstack([S1, St, S2]).T
[docs] @_geodocs def trapezoids_and_rectangles( network, pore_diameter="pore.diameter", throat_diameter="throat.diameter", ): r""" Computes hydraulic size factors for conduits assuming pores are trapezoids and throats are rectangles. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns ------- Notes ----- This model should only be used for true 2D networks, i.e. with planar symmetry. """ D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T L1, Lt, L2 = _conduit_lengths.cones_and_cylinders( network=network, pore_diameter=pore_diameter, throat_diameter=throat_diameter ).T # Fi is the integral of (1/A^3) dx, x = [0, Li] F1 = L1 / 2 * (D1 + Dt) / (D1 * Dt)**2 F2 = L2 / 2 * (D2 + Dt) / (D2 * Dt)**2 Ft = Lt / Dt**3 # S is 1 / (12 * F) S1, St, S2 = [1 / (Fi * 12) for Fi in [F1, Ft, F2]] return _np.vstack([S1, St, S2]).T
[docs] @_geodocs def intersecting_trapezoids( network, pore_diameter="pore.diameter", throat_coords="throat.coords" ): r""" Computes hydraulic size factors for conduits of intersecting trapezoids. Parameters ---------- %(network)s %(Dp)s %(Tcoords)s Returns ------- Notes ----- This model should only be used for true 2D networks, i.e. with planar symmetry. """ D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T L1, Lt, L2 = _conduit_lengths.intersecting_trapezoids( network=network, throat_coords=throat_coords ).T # Fi is the integral of (1/A^3) dx, x = [0, Li] F1 = L1 / 2 * (D1 + Dt) / (D1 * Dt)**2 F2 = L2 / 2 * (D2 + Dt) / (D2 * Dt)**2 # S is 1 / (12 * F) S1 = 1 / (F1 * 12) S2 = 1 / (F2 * 12) St = _np.full(len(Lt), _np.inf) return _np.vstack([S1, St, S2]).T
[docs] @_geodocs def hybrid_trapezoids_and_rectangles( network, pore_diameter="pore.diameter", throat_coords="throat.coords" ): r""" Computes hydraulic size factors for conduits assuming pores are trapezoids and throats are rectangles. Parameters ---------- %(network)s %(Dp)s %(Tcoords)s Returns ------- Notes ----- This model should only be used for true 2D networks, i.e. with planar symmetry. """ D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T L1, Lt, L2 = _conduit_lengths.hybrid_trapezoids_and_rectangles( network=network, pore_diameter=pore_diameter, throat_coords=throat_coords ).T # Fi is the integral of (1/A^3) dx, x = [0, Li] F1 = L1 / 2 * (D1 + Dt) / (D1 * Dt)**2 F2 = L2 / 2 * (D2 + Dt) / (D2 * Dt)**2 Ft = Lt / Dt**3 mask = Lt == 0.0 if mask.any(): inv_F_t = _np.zeros(len(Ft)) inv_F_t[~mask] = 1/Ft[~mask] inv_F_t[mask] = _np.inf else: inv_F_t = 1/Ft # S is 1 / (12 * F) S1 = 1 / (F1 * 12) St = inv_F_t / 12 S2 = 1 / (F2 * 12) return _np.vstack([S1, St, S2]).T
[docs] @_geodocs def pyramids_and_cuboids( network, pore_diameter="pore.diameter", throat_diameter="throat.diameter", ): r""" Computes hydraulic size factors for conduits assuming pores are truncated pyramids and throats are cuboids. Parameters ---------- %(network)s %(Dp)s %(Dt)s Returns ------- Notes ----- """ D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T L1, Lt, L2 = _conduit_lengths.pyramids_and_cuboids( network=network, pore_diameter=pore_diameter, throat_diameter=throat_diameter ).T # Fi is the integral of (1/A^2) dx, x = [0, Li] F1 = 1 / 3 * (L1 * (D1**2 + D1 * Dt + Dt**2) / (D1**3 * Dt**3)) F2 = 1 / 3 * (L2 * (D2**2 + D2 * Dt + Dt**2) / (D2**3 * Dt**3)) Ft = Lt / Dt**4 # I is the integral of (y^2 + z^2) dA, divided by A^2 I1 = I2 = It = 1 / 6 # S is 1 / (16 * pi^2 * I * F) S1 = 1 / (16 * _np.pi**2 * I1 * F1) St = 1 / (16 * _np.pi**2 * It * Ft) S2 = 1 / (16 * _np.pi**2 * I2 * F2) return _np.vstack([S1, St, S2]).T
[docs] @_geodocs def intersecting_pyramids( network, pore_diameter="pore.diameter", throat_coords="throat.coords" ): r""" Computes hydraulic size factors of intersecting pyramids. Parameters ---------- %(network)s %(Dp)s %(Tcoords)s Returns ------- Notes ----- """ D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T L1, Lt, L2 = _conduit_lengths.intersecting_pyramids( network=network, throat_coords=throat_coords ).T # Fi is the integral of (1/A^2) dx, x = [0, Li] F1 = 1 / 3 * (L1 * (D1**2 + D1 * Dt + Dt**2) / (D1**3 * Dt**3)) F2 = 1 / 3 * (L2 * (D2**2 + D2 * Dt + Dt**2) / (D2**3 * Dt**3)) # I is the integral of (y^2 + z^2) dA, divided by A^2 I1 = I2 = 1 / 6 # S is 1 / (16 * pi^2 * I * F) S1 = 1 / (16 * _np.pi**2 * I1 * F1) S2 = 1 / (16 * _np.pi**2 * I2 * F2) St = _np.full(len(Lt), _np.inf) return _np.vstack([S1, St, S2]).T
[docs] @_geodocs def hybrid_pyramids_and_cuboids( network, pore_diameter="pore.diameter", throat_coords="throat.coords" ): r""" Computes hydraulic size factors for conduits assuming pores are truncated pyramids and throats are cuboids. Parameters ---------- %(network)s %(Dp)s %(Tcoords)s Returns ------- Notes ----- """ D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T L1, Lt, L2 = _conduit_lengths.hybrid_pyramids_and_cuboids( network=network, pore_diameter=pore_diameter, throat_coords=throat_coords ).T # Fi is the integral of (1/A^2) dx, x = [0, Li] F1 = 1 / 3 * (L1 * (D1**2 + D1 * Dt + Dt**2) / (D1**3 * Dt**3)) F2 = 1 / 3 * (L2 * (D2**2 + D2 * Dt + Dt**2) / (D2**3 * Dt**3)) Ft = Lt / Dt**4 # I is the integral of (y^2 + z^2) dA, divided by A^2 I1 = I2 = It = 1 / 6 mask = Lt == 0.0 if mask.any(): inv_F_t = _np.zeros(len(Ft)) inv_F_t[~mask] = 1/Ft[~mask] inv_F_t[mask] = _np.inf else: inv_F_t = 1/Ft # S is 1 / (16 * pi^2 * I * F) S1 = 1 / (16 * _np.pi**2 * I1 * F1) St = inv_F_t / (16 * _np.pi**2 * It) S2 = 1 / (16 * _np.pi**2 * I2 * F2) return _np.vstack([S1, St, S2]).T
[docs] @_geodocs def cubes_and_cuboids( network, pore_diameter="pore.diameter", throat_diameter="throat.diameter", pore_aspect=[1, 1, 1], throat_aspect=[1, 1, 1], ): r""" Computes hydraulic size factors for conduits assuming pores are cubes and throats are cuboids. Parameters ---------- %(network)s %(Dp)s %(Dt)s pore_aspect : list Aspect ratio of the pores throat_aspect : list Aspect ratio of the throats Returns ------- Notes ----- """ D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T L1, Lt, L2 = _conduit_lengths.cubes_and_cuboids( network=network, pore_diameter=pore_diameter, throat_diameter=throat_diameter ).T # Fi is the integral of (1/A^2) dx, x = [0, Li] F1 = L1 / D1**4 F2 = L2 / D2**4 Ft = Lt / Dt**4 # I is the integral of (y^2 + z^2) dA, divided by A^2 I1 = I2 = It = 1 / 6 # S is 1 / (16 * pi^2 * I * F) S1 = 1 / (16 * _np.pi**2 * I1 * F1) St = 1 / (16 * _np.pi**2 * It * Ft) S2 = 1 / (16 * _np.pi**2 * I2 * F2) return _np.vstack([S1, St, S2]).T
[docs] @_geodocs def squares_and_rectangles( network, pore_diameter="pore.diameter", throat_diameter="throat.diameter", pore_aspect=[1, 1], throat_aspect=[1, 1], ): r""" Computes hydraulic size factors for conduits assuming pores are squares and throats are rectangles. Parameters ---------- %(network)s %(Dp)s %(Dt)s pore_aspect : list Aspect ratio of the pores throat_aspect : list Aspect ratio of the throats Returns ------- Notes ----- This model should only be used for true 2D networks, i.e. with planar symmetry. """ D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T L1, Lt, L2 = _conduit_lengths.squares_and_rectangles( network=network, pore_diameter=pore_diameter, throat_diameter=throat_diameter ).T # Fi is the integral of (1/A^3) dx, x = [0, Li] F1 = L1 / D1**3 F2 = L2 / D2**3 Ft = Lt / Dt**3 # S is 1 / (12 * F) S1, St, S2 = [1 / (Fi * 12) for Fi in [F1, Ft, F2]] return _np.vstack([S1, St, S2]).T
[docs] @_geodocs def ncylinders_in_series( network, pore_diameter="pore.diameter", throat_diameter="throat.diameter", n=5, ): r""" Computes hydraulic size factors for conduits of spheres and cylinders with the spheres approximated as N cylinders in series. Parameters ---------- %(network)s %(Dp)s %(Dt)s n : int Number of cylindrical divisions for each pore Returns ------- Notes ----- """ D1, Dt, D2 = network.get_conduit_data(pore_diameter.split('.', 1)[-1]).T # Ensure throats are never bigger than connected pores Dt = _np.minimum(Dt, 0.99 * _np.minimum(D1, D2)) L1, Lt, L2 = _conduit_lengths.spheres_and_cylinders( network=network, pore_diameter=pore_diameter, throat_diameter=throat_diameter ).T dL1 = _np.linspace(0, L1, num=n) dL2 = _np.linspace(0, L2, num=n) r1 = D1 / 2 * _np.sin(_np.arccos(dL1 / (D1 / 2))) r2 = D2 / 2 * _np.sin(_np.arccos(dL2 / (D2 / 2))) gtemp = (_np.pi * r1 ** 4 / (8 * L1 / n)).T F1 = 1 / _np.sum(1 / gtemp, axis=1) gtemp = (_np.pi * r2 ** 4 / (8 * L2 / n)).T F2 = 1 / _np.sum(1 / gtemp, axis=1) Ft = (_np.pi * (Dt / 2) ** 4 / (8 * Lt)).T return _np.vstack([F1, Ft, F2]).T